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NUMERICAL ANALYSIS OF THE BRANCHED FORMS OF BENDING FOR A ROD

UDC 539.370L. I. Shkutin

Nonlinear boundary-value problems of plane bending of elastic arches subjected to uniformly
distributed loading are solved numerically by the shooting method. The problems are formulated
for a system of sixth-order ordinary differential equations that are more general than the Euler
equations. Four variants of rod loading by transverse and longitudinal forces are considered.
Branching of the solutions of boundary-value problems and the existence of intersected and
isolated branches are shown. In the case of a translational longitudinal force, the classical
Euler elasticas are obtained. The existence of a unique (rectilinear) form of equilibrium upon
compression of a rod by a following longitudinal force is shown.

The nonlinear problems of plane bending of rods were analyzed mathematically by Popov [1, 2]. The
analysis was based on the exact solution of one-dimensional quasilinear Euler equations in elliptic Legendre
integrals. For a straight rod deformed by lateral loads, the possible forms of nonlinear bending were classified
and the regions of their existence were determined. In [2], an algorithm for numerical solution of corresponding
differential problems with the use of the difference approximation and Newton’s iterative procedure was also
proposed.

In the present work, the boundary-value problems of plane bending of a straight rod are formulated
on the basis of more general equations that take into account the linear dependence between bending, tensile,
and shear deformations [3]. The solution of these generalized equations is not expressed in terms of elliptic
integrals. An effective algorithm for numerical analysis of nonlinear boundary-value problems by the shooting
method is proposed.

We introduce the Cartesian coordinate system xj with the orthonormalized base ej . The base line of
the straight rod is set by the parametric equations

x1 ≡ x2 ≡ 0, x3 = t ∀ t ∈ [0, l], (1)

where t is the internal parameter of the line and l is the initial length of the rod. According to (1), the base
line in the initial state is a segment of the x3 axis. We consider that the cross-sectional (profile) area A of the
rod is constant, the base line passes through the geometrical center of the cross section, and the coordinate
planes coincide with the planes of geometrical and material symmetry of the rod.

We consider the deformation of the rod caused by the force applied to the end (t = l) and specified by
the vector

P = P2e2 + P3e3. (2)

The end t = 0 is rigidly fixed, i.e., its displacements and rotations are excluded. Under these conditions, a
deformation of the rod under which the base line remains plane can occur:

x1 ≡ 0, x2 = y(t), x3 = z(t) ∀ t ∈ [0, l].
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Here y and z are the instantaneous coordinates of the point t in the plane (x2, x3). Deformation of this kind
is generally called plane bending.

To analyze the plane bending of the rod subjected to a quasistatic load of the form (2), the nonlinear
equations of the one-dimensional deformation model for a rod [3] are used. The goal of our analysis is to study
the nonlinear kinematic effects. Therefore, the rod material is considered linearly-elastic and unboundedly
strong.

Within the framework of the adopted restrictions, the elastic resistance of the rod is determined by
the stiffness matrix

D =


G1 0 0

0 G2 0

0 0 E3

 ,
where G1 and G2 are the moduli of transverse shear and E3 is the modulus of longitudinal tension or com-
pression. In particular, for an isotropic material, we have G2 = G1 = E3/(2 + 2ν), where ν is Poisson’s ratio.
The nonzero generalized stiffness matrices of the rod are calculated from the formulas of the form (2.7) given
in [3]:

E = AD, Eii = IiD, Ii =
∫
A

(xi)2dA (i = 1, 2).

The system of equations of nonlinear plane bending of a rod includes the generalized constitutive
relations

X32 = AG2U32, X33 = AE3U33, Y = Hθ′, H = I2E3, (3)

the static equations following from [3, Eq. (1.7)]

X32 = P2 cos θ + P3 sin θ, X33 = −P2 sin θ + P3 cos θ, Y ′ + U32X33 − (1 + U33)X32 = 0, (4)

and the kinematic dependences following from [3, Eq. (1.6)]

y′ = U32 cos θ − (1 + U33) sin θ, z′ = U32 sin θ + (1 + U33) cos θ. (5)

In system (3)–(5), θ(t) is the independent angle of rotation of the transverse cross section, U32(t) is the
transverse-shear deformation, U33(t) is the deformation of longitudinal tension or compression, X3j(t) is the
force vector component in the converted coordinate system, and Y (t) is the bending moment relative to the
x1 axis; the prime denotes the derivative with respect to t. We note that the last equation in (4) expresses
the nonlinear dependence between the bending and metric deformations of the rod.

The boundary conditions for system (3)–(5) are written in the form

y(0) = z(0) = 0, θ(0) = 0, Y (l) = 0. (6)

One condition is set at the point t = l owing to the fact that in formulating the static equations, the value of
the force vector (2) known at this point is used.

Without loss of generality, hereinafter, the boundary-value problem (3)–(6) is considered on the unit
interval 0 6 t 6 1. Here it is transformed to the system

y′0 = y1, y′1 = f2 − (γ − 1)ε2f2f3, y′2 = ε2(γf2 cos y0 − f3 sin y0)− sin y0, (7)

y′3 = ε2(γf2 sin y0 + f3 cos y0) + cos y0, f2 = p2 cos y0 + p3 sin y0, f3 = −p2 sin y0 + p3 cos y0

with conditions

y3(0) = y2(0) = y0(0) = y1(1) = 0. (8)

The functions y0 = θ, y1 = lY/H, y2 = y/l, and y3 = z/l and the parameters γ = E3/G2, ε2 = I2/(Al2),
and pj = l2Pj/H are introduced into (7) and (8). System (7) describes the nonlinear elastic bending of the
initially straight rod in the plane (x2, x3) at given values of the loading, p2 and p3, and rigidity, γ and ε,
parameters and under specified fixing conditions for the rod. The parameter ε is a small quantity of the order
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Fig. 1

of the ratio of the rod thickness to its length. For ε = 0, Eqs. (7) degenerate into the classical Euler equations
[1, 2], which describe the nonlinear bending of a rod without tension and shear.

Being independent, system (7) admits one quadrature. The first two equations are reduced to one
second-order equation relative to the function y0 = θ(t): y′′0 = f2 − (γ − 1)ε2f2f3, from which follows the
quadrature

(y′0)2 = (y1)2 = 2

y0∫
y0(1)

[f2 − (γ − 1)ε2f2f3] dy0 (9)

taking into account the last condition in (8). Equation (9) can be used for a preliminary analysis of the
solutions of problem (7), (8). In particular, it follows from this equation that in the regions where the integral
(9) takes on negative values, the solutions are absent. In the regions with positive values of the integral, each
solution should have two branches antisymmetric about the variable y1 = θ′(t). It follows from the geometrical
considerations that the clockwise and counter-clockwise bendings correspond to these branches.

The nonlinear boundary-value problem (7), (8) was solved by the shooting method: the condition
y1(0) = k was added to conditions (8) and a one-parameter family of solutions y(p, t) of system (7) with
conditions

y3(0) = y2(0) = y0(0) = 0, y1(0) = k (10)

was constructed numerically at a given value of the parameter k. Here y is the vector of desired functions
and p is the variable parameter of the external force (p2 or p3). The value of the parameter p corresponding
to the solution of the boundary-value problem (7), (8) was found iteratively from the condition y1(p, 1) = 0.
The Cauchy problem (7), (10) was solved by the fourth-order Runge–Kutta method.

The above-described scheme was applied to numerical analysis of four problems of plane bending of a
straight rod which simulate various variants of its loading for γ = 2.5 and ε = 0.02.

Loading by a Translational Transverse Force. The force vector (2) remains collinear to the basis
vector e2 and the coordinate axis x2 during deformation, so that P2 = P and P3 = 0 (P is the magnitude of
the applied force). The functions f2 and f3 in system (7) are of the form f2 = p cos y0 and f3 = −p sin y0,
where p = l2P/H is the normalized parameter of the external force.

Equation (9) admits the existence of solutions at positive and negative values of the parameter p. The
symmetry of the problem allows one to be restricted oneself only to positive values.

Figure 1 shows calculation results obtained for three lower branches of the dependence of the kinematic
parameter q on the force parameter p. By definition, we have q = −θ(1) for branch 1 and q = θ(1) for branches
2 and 3, so that the parameter q is equal to the angle of rotation of the loaded end of the rod.

Approaching asymptotically a linear dependence as p→ 0, branch 1 is a branch of the most lower forms
of bending. They are stable and only these forms occur under quasistatic loading of the rod. The straight
line q = π/2 is an asymptotic line of the branch as p→ +∞ (the straight line q = −π/2 is an asymptotic line
as p→ −∞). For two points (p, q) of branch 1, the forms of equilibrium of the rod are shown in Fig. 2 (curve
1 refers to p = 4.83 and q = 1.202 and curve 2 refers to p = 50 and q = 1.569). The value of the parameter q
of the second form is close to the limit value π/2.
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Fig. 2 Fig. 3

Fig. 4

Branches 2 and 3 in Fig. 1 emanate from the common point (p ≈ 13.75, q = π) and they are located
on the band π 6 q < 3π/2. The forms of bending corresponding to points of branch 2 are shown in Fig. 3,
curve 1 corresponding to the common point, curve 2 to the point (p ≈ 14.13, q = 4.227), and curve 3 to the
point (p = 50, q = 4.692).

Loading by a Following Transverse Force. During deformation the force vector (2) is normal to
the base line at the boundary point t = 1, so that P2 = P cos q and P3 = −P sin q [q = −θ(1)]. The functions
f2 and f3 in system (7) have the form f2 = p cos(y0 + q) and f3 = −p sin(y0 + q), where p is the parameter
of the external force. Equation (9) admits the existence of solutions at positive and negative values of the
parameter p.

Results of the solution of the boundary-value problem (7), (8) are given in Figs. 4–6. Two most lower
branches of the dependence q(p) are plotted in Fig. 4. These branches have the common point (p ≈ 13.75,
q = π), which is the same as in case of loading by a translational transverse force, and they are located in the
finite region (0 6 p < 55, 0 6 q 6 π). The change in the forms of equilibrium of the rod is shown in Figs. 5
and 6 for branches 1 and 2, respectively. Curve 1 in Fig. 5 corresponds to the point (p = 3.25, q = 1.5), curve
2 to the point (p = 6.59, q = 2.5), and curve 3 to the point (p = 13.75, q = π). Curve 1 in Fig. 6 corresponds
to the point (p = 23.45, q = 2.5), curve 2 to the point (p = 31.36, q = 1.5), and curve 3 to the point (p = 54.6,
q = 0).

Loading by a Translational Longitudinal Force. During deformation the force vector (2) remains
collinear to the basis vector e3 and the x3 coordinate axis, so that P2 = 0 and P3 = −P (the sign is chosen in
such a way that the load on the straight rod is compressive for P > 0 and stretching for P < 0). The functions
f2 and f3 in system (7) have the forms f2 = −p sin y0 and f3 = −p cos y0, respectively. In this case, a trivial
solution of problem (7), (8) that determines the rectilinear forms of equilibrium of the rod (compressive for
p > 0 and stretching for p < 0)
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Fig. 5 Fig. 6

Fig. 7

y0(t) ≡ 0, y1(t) ≡ 0, y2(t) ≡ 0, y3(t) = (1− ε2p)t (11)

exist. Euler showed that the degenerate nonlinear problem (ε→ 0) has a countable set of nontrivial solutions.
Later, these solutions were expressed in terms of elliptic Legendre integrals and the results obtained by Euler
were supported and complemented [1, 2].

A numerical analysis was performed to find the nontrivial solution branches of the generalized
boundary-value problem (7), (8), i.e., the forms different from (11).

Calculation of the integral (9) leads to the equation

(y′0)2 = 2p(cos y0 − cos q) +
γ − 1

2
ε2p2(cos 2y0 − cos 2q).

Together with the rectilinear form y0 ≡ q ≡ 0, this equation admits the bent forms |y0| 6 |q| for positive
values of the parameter p.

Figure 7 shows calculation results obtained for three nontrivial branches with the smallest values of p
at the branchpoints, i.e., at the points of intersection of the branches with the abscissa (trivial branch). All
the branches are located on the band 0 6 q < π if the kinematic parameter q is determined by the equality
q = |θ(1)|. The bent forms of equilibrium of a cantilever rod corresponding to the first two branches are shown
in Figs. 8 and 9 for different values of p and q. Curve 1 in Fig. 8 corresponds to the point (p = 5.03, q = 2.202),
curve 2 to the point (p = 9.34, q = 2.758), and curve 3 to the point (p = 25.01, q = 3.1). Curve 1 in Fig. 9
corresponds to the point (p = 22.71, q = 0.423), curve 2 to the point (p = 27.05, q = 1.23), and curve 3 to the
point (p = 45.33, q = 2.2). If one maps the curves in Figs. 8 and 9 symmetrically about the horizontal axis,
they will take the form of Euler elasticas for a rod of length 2l which is freely supported at both ends [4]. It is
noteworthy that in addition to symmetric forms of bending, a hinged rod also has alternating antisymmetric
forms [1].
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Fig. 8 Fig. 9

Only the forms corresponding to the first branch of the dependence q(p) are realized under quasistatic
loading (see Fig. 8). However, the higher forms of bending are not only a consequence of the static equations.
They occur, for example, upon pulse loading of the rod [5].

Loading by a Following Longitudinal Force. Upon deformation, the force vector (2) is tangent
to the base line at the boundary point t = 1, so that P2 = P sin q and P3 = P cos q [q = −θ(1)]. In contrast
to the previous problem, the force P > 0 is stretching, and the force P < 0 is compressive. The functions f2

and f3 in system (7) take the forms f2 = p sin(y0 + q) and f3 = p cos(y0 + q), respectively.
Calculation of the integral (9) yields the equation

(y′0)2 = 2p[1− cos(y0 + q)]− γ − 1
2

ε2p2[1− cos(2y0 + 2q)], (12)

which, obviously, has no solutions for p < 0 (γ > 1 for all real materials). This means that the straight rod
has no bent forms of equilibrium for the compressive following force. Therefore, the bifurcation criterion is not
suitable for studying the instability of the rectilinear forms of equilibrium of a rod compressed by a following
force [6, 7].

For p > 0 (stretching following force), Eq. (12) admits the existence of bent forms alongside with a
stable rectilinear form y0 ≡ q ≡ 0. These forms are possible at large values of the loading parameters and are
of no interest for practice.

Conclusions. Testing of the algorithm for numerical analysis of degenerate problems having the
solution in elliptic integrals [1, 2] has shown its high accuracy and efficiency. At the same time, the numerical
analysis has confirmed the correctness of the set of Euler equations in the interval 0 6 p� O(ε−2) determined
by an asymptotic analysis of the perturbed system (7).
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